Quantcast
HR
Germany
63 views this week
Hans-Egon Richert

Hans-Egon Richert mathematician

mathematician
The basics
Quick Facts
Intro mathematician
Countries Germany
Occupations Mathematician Professor Educator
Gender male
Birth 2 June 1924 (Hamburg)
Death 25 November 1993 (Blaustein)
Star sign GeminiGemini
Education University of Hamburg
The details
Biography

Hans-Egon Richert (June 2, 1924 – November 25, 1993) was a German mathematician who worked primarily in analytic number theory. He is the author (with Heini Halberstam) of a definitive book on sieve theory.

Life and education

Hans-Egon Richert was born in 1924 in Hamburg, Germany. He attended the University of Hamburg and received his Ph.D under Max Deuring in 1950. He held a temporary chair at the University of Göttingen and then a newly created chair at the University of Marburg. In 1972 he moved to the University of Ulm, where he remained until his retirement in 1991. He died on November 25, 1993 in Blaustein, near Ulm, Germany.

Work

Richert worked primarily in analytic number theory, and beginning around 1965 started a collaboration with Heini Halberstam and shifted his focus to sieve theory. For many years he was a chairman of the Analytic Number Theory meetings at the Mathematical Research Institute of Oberwolfach.

Analytic number theory

Richert made contributions to additive number theory, Dirichlet series, Riesz summability, the multiplicative analog of the Erdős–Fuchs theorem, estimates of the number of non-isomorphic abelian groups, and bounds for exponential sums. He proved the exponent 15/46 for the Dirichlet divisor problem, a record that stood for many years.

Sieve methods

One of Richert's notable results was the Jurkat–Richert theorem, joint work with Wolfgang B. Jurkat that improved the Selberg sieve and is used in the proof of Chen's theorem. Richert also produced a "readable form" of Chen's theorem (it is covered in the last chapter of Sieve Methods).

Halberstam & Richert's book Sieve Methods was the first exhaustive account of the subject.

In reviewing the book in 1976, Hugh Montgomery wrote "In the past, researchers have generally derived the sieve bounds required for an application, but now workers will find that usually an appeal to an appropriate theorem of Sieve methods will suffice," and "For years to come, Sieve methods will be vital to those seeking to work in the subject, and also to those seeking to make applications."

The contents of this page are sourced from Wikipedia article. The contents are available under the CC BY-SA 4.0 license.
comments so far.
Comments
Sources
References
http://www.mathematik.uni-ulm.de/fak/presse/richert.html.en
http://www.genealogy.ams.org/id.php?id=21605
http://www.ams.org/mathscinet-getitem?mr=0424730
http://doi.org/10.1090%2FS0002-9904-1976-14180-8
http://isni.org/isni/0000000109507711
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=21605
https://www.idref.fr/083717250
https://id.loc.gov/authorities/names/no97068131
https://d-nb.info/gnd/117719420
https://viaf.org/viaf/5715732
https://www.wikidata.org/wiki/Q111041
arrow-left arrow-right arrow-up arrow-down instagram whatsapp myspace quora soundcloud spotify tumblr vk website youtube stumbleupon comments comments pandora gplay iheart tunein pandora gplay iheart tunein itunes