peoplepill id: daniel-quillen
1 views today
1 views this week
Daniel Quillen

Daniel Quillen

American mathematician
Daniel Quillen
The basics

Quick Facts

Intro American mathematician
A.K.A. Daniel Gray "Dan" Quillen
Was Mathematician Topologist Educator
From United States of America
Type Academia Mathematics
Gender male
Birth 27 June 1940, City of Orange Township
Death 30 April 2011, San Francisco (aged 70 years)
Star sign Cancer
The details (from wikipedia)


Daniel Gray "Dan" Quillen (June 22, 1940 – April 30, 2011) was an American mathematician.
From 1984 to 2006, he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. He is known for being the "prime architect" of higher algebraic K-theory, for which he was awarded the Cole Prize in 1975 and the Fields Medal in 1978.

Education and career

Quillen was born in Orange, New Jersey, and attended Newark Academy. He entered Harvard University, where he earned both his AB, in 1961, and his PhD in 1964; the latter completed under the supervision of Raoul Bott, with a thesis in partial differential equations. He was a Putnam Fellow in 1959.

Quillen obtained a position at the Massachusetts Institute of Technology after completing his doctorate. However, he also spent a number of years at several other universities, including the University of Chicago as a Dickson instructor. He visited France twice: first as a Sloan Fellow in Paris, during the academic year 1968–69, where he was greatly influenced by Grothendieck, and then, during 1973–74, as a Guggenheim Fellow. In 1969–70, he was a visiting member of the Institute for Advanced Study in Princeton, where he came under the influence of Michael Atiyah. In 1978, Quillen received a Fields Medal at the International Congress of Mathematicians held in Helsinki.

Quillen retired at the end of 2006. He died from complications of Alzheimer's disease on April 30,

2011, aged 70, in Florida.

Mathematical contributions

Quillen's best known contribution (mentioned specifically in his Fields medal citation) was his formulation of higher algebraic K-theory in 1972. This new tool, formulated in terms of homotopy theory, proved to be successful in formulating and solving problems in algebra, particularly in ring theory and module theory. More generally, Quillen developed tools (especially his theory of model categories) which allowed algebro-topological tools to be applied in other contexts.

Before his work in defining higher algebraic K-theory, Quillen worked on the Adams conjecture, formulated by Frank Adams in homotopy theory. His proof of the conjecture used techniques from the modular representation theory of groups, which he later applied to work on cohomology of groups and algebraic K-theory. He also worked on complex cobordism, showing that its formal group law is essentially the universal one.

In related work, he also supplied a proof of Serre's conjecture about the triviality of algebraic vector bundles on affine space, which led to the Bass–Quillen conjecture. He was also an architect (along with Dennis Sullivan) of rational homotopy theory.

He introduced the Quillen determinant line bundle and the Mathai–Quillen formalism.

Selected publications

  • Quillen, Daniel G., Homology of commutative rings, unpublished notes, archived from the original on 2015-04-20 
  • Quillen, Daniel G. (1967), Homotopical algebra, Lecture Notes in Mathematics, 43, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0097438, ISBN 978-3-540-03914-3, MR 0223432 
  • Quillen, Daniel (1969), "On the formal group laws of unoriented and complex cobordism theory", Bulletin of the American Mathematical Society, 75: 1293–1298, doi:10.1090/S0002-9904-1969-12401-8, MR 0253350 
  • Quillen, D. (1969), "Rational homotopy theory", Annals of Math, Annals of Mathematics, 90 (2): 205–295, doi:10.2307/1970725, JSTOR 1970725, MR 0258031 
  • Quillen, Daniel (1971), "The Adams conjecture", Topology. An International Journal of Mathematics, 10: 67–80, doi:10.1016/0040-9383(71)90018-8, ISSN 0040-9383, MR 0279804 
  • Quillen, Daniel (1971), "The spectrum of an equivariant cohomology ring. I", Annals of Mathematics. Second Series, 94: 549–572, ISSN 0003-486X, JSTOR 1970770, MR 0298694 
  • Quillen, Daniel (1971), "The spectrum of an equivariant cohomology ring. II", Annals of Mathematics. Second Series, 94: 573–602, ISSN 0003-486X, JSTOR 1970771, MR 0298694 
  • Quillen, Daniel (1973), "Higher algebraic K-theory. I", Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math, 341, Berlin, New York: Springer-Verlag, pp. 85–147, doi:10.1007/BFb0067053, MR 0338129 
  • Quillen, Daniel (1975), "Higher algebraic K-theory", Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Montreal, Quebec: Canad. Math. Congress, pp. 171–176, MR 0422392  (Quillen's Q-construction)
  • Quillen, Daniel (1974), "Higher K-theory for categories with exact sequences", New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), London Math. Soc. Lecture Note Ser., 11, Cambridge University Press, pp. 95–103, MR 0335604 
  • Quillen, Daniel (1976), "Projective modules over polynomial rings", Inventiones Mathematicae, 36: 167–171, doi:10.1007/BF01390008 
  • Quillen, Daniel (1985), "Superconnections and the Chern character", Topology. An International Journal of Mathematics, 24 (1): 89–95, doi:10.1016/0040-9383(85)90047-3, ISSN 0040-9383, MR 790678 

The contents of this page are sourced from Wikipedia article. The contents are available under the CC BY-SA 4.0 license.
comments so far.
From our partners
arrow-left arrow-right instagram whatsapp myspace quora soundcloud spotify tumblr vk website youtube pandora tunein iheart itunes