Mildred Dresselhaus
Quick Facts
Biography
Mildred Dresselhaus (born Mildred Spiewak on November 11, 1930 in Brooklyn, New York), known as the "queen of carbon science", is the first female Institute Professor and professor emerita of physics and electrical engineering at the Massachusetts Institute of Technology. Dresselhaus has won numerous awards including the Presidential Medal of Freedom, the National Science Medal, the Enrico Fermi Award and the Vannevar Bush Award.
Biography
She was born Mildred Spiewak on November 11, 1930 in Brooklyn.
Dresselhaus received her high school degree at Hunter College High School, undergraduate degree at Hunter College in New York, and carried out postgraduate study at the University of Cambridge on a Fulbright Fellowship and Harvard University. She received a PhD from the University of Chicago in 1958. She then spent two years at Cornell University as a postdoc before moving to Lincoln Lab as a staff member. She became a visiting professor of electrical engineering at MIT in 1967, became a tenured faculty member in 1968, and became a professor of physics in 1983. In 1985, she was appointed the first female Institute Professor at MIT
Dresselhaus was awarded the National Medal of Science in 1990 in recognition of her work on electronic properties of materials as well as expanding the opportunities of women in science and engineering. and in 2005 she was awarded the 11th Annual Heinz Award in the category of Technology, the Economy and Employment. In 2008 she was awarded the Oersted Medal. IEEE Medal of Honor - 2015
In 2000–2001, she was the director of the Office of Science at the U.S. Department of Energy. From 2003-2008, she was the chair of the governing board of the American Institute of Physics. She also has served as president of the American Physical Society, the first female president of the American Association for the Advancement of Science, and treasurer of the National Academy of Sciences. Dresselhaus has devoted a great deal of time to supporting efforts to promote increased participation of women in physics.
In 2012 Dresselhaus was co-recipient of the Enrico Fermi Award, along with Burton Richter. On May 31, 2012, Dresselhaus was awarded the Kavli Prize "for her pioneering contributions to the study of phonons, electron-phonon interactions, and thermal transport in nanostructures."
In 2014, she was awarded the Presidential Medal of Freedom.
Dresselhaus is particularly noted for her work on graphite, graphite intercalation compounds, fullerenes, carbon nanotubes, and low-dimensional thermoelectrics. Her group has made frequent use of electronic band structure, Raman scattering and the photophysics of carbon nanostructures. Dresselhaus' former students include such notable materials scientists as Deborah Chung and James S. Speck and notable physicists as Nai-Chang Yeh, Greg Timp, Mansour Shayegan, Lourdes Salamanca Riba, and Ahmet Erbil.
There are several physical theories named after Dresselhaus. The Hicks-Dresselhaus Model (L. D. Hicks and Dresselhaus)is the first basic model for low-dimensional thermoelectrics, which initiated the whole band field. The SFDD model (Riichiro Saito, Mitsutaka Fujita, Gene Dresselhaus, and Mildred Dresselhaus)first predicted the band structures of carbon nanotubes. The Rashba-Dresselhaus Effect refers to the spin-orbital interaction effect modeled by Gene Dresselhaus, Mildred Dresselhaus's husband.
She is married to Gene Dresselhaus, a well-known theorist, and has four children and several grandchildren.
Honors and awards
- Honorary Degree of Doctor of Science from the ETH Zurich, 2015
- IEEE Medal of Honor, 2015 (first female recipient)
- National Inventors Hall of Fame induction 2014
- Presidential Medal of Freedom, 2014
- Honorary Degree of Doctor of Science, The Hong Kong Polytechnic University, Hong Kong, 2013
- Arthur R. von Hippel Award, Materials Research Society, 2013
- Kavli Prize in Nanoscience, 2012
- Enrico Fermi Award (second female recipient), 2012
- Vannevar Bush Award (second female recipient), 2009
- ACS Award for Encouraging Women into Careers in the Chemical Sciences, 2009
- Oliver E. Buckley Condensed Matter Prize, American Physical Society, 2008
- Oersted Medal, 2007
- L'Oréal-UNESCO Awards for Women in Science, 2007
- Heinz Award for Technology, the Economy and Employment, 2005
- IEEE Founders Medal Recipients, 2004
- Karl Taylor Compton Medal for Leadership in Physics, American Institute of Physics, 2001
- Medal of Achievement in Carbon Science and Technology, American Carbon Society, 2001
- Honorary Member of the Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia, 2000
- National Materials Advancement Award of the Federation of Materials Societies, 2000
- Honorary Doctorate from the Catholic University of Leuven, Belgium, February 2000
- Nicholson Medal, American Physical Society, March 2000
- Weizmann Institute's Millennial Lifetime Achievement Award, June 2000
- SGL Carbon Award, American Carbon Society, 1997
- National Medal of Science, 1990
- "Doing the right things". ETH Zurich. November 21, 2015. Retrieved November 23, 2015.
- "Spotlight | National Inventors Hall of Fame". Invent.org. 2013-11-21. Retrieved 2016-05-29.
- "President Obama Announces the Presidential Medal of Freedom Recipients". The White House. November 10, 2014. Retrieved November 11, 2014.
- "PolyU to honour five distinguished personalities at 19th Congregation". The Hong Kong Polytechnic University. September 23, 2013. Retrieved March 24, 2015.
- MIT
Selected publications
- Dresselhaus, M. S.; et.al. "Analysis of Picosecond Pulsed Laser Melted Graphite", Massachusetts Institute of Technology, Harvard University, Los Alamos National Laboratory, United States Department of Energy, (December 1986).
- Dresselhaus, M. S.; et.al. "The Transport Properties of Activated Carbon Fibers", Lawrence Livermore National Laboratory, United States Department of Energy, (July 1990).
- Dresselhaus, M. S.; et.al. "Photoconductivity of Activated Carbon Fibers", Lawrence Livermore National Laboratory, United States Department of Energy, (August 1990).
- Dresselhaus, M. S.; et.al. "Synthesis and Evaluation of Single Layer, Bilayer, and Multilayer Thermoelectric Thin Films", Lawrence Livermore National Laboratory, United States Department of Energy, (January 20, 1995).
- M. S. Dresselhaus & P. C. Eklund (2000). "Phonons in carbon nanotubes" (PDF). Advances in Physics. 49 (6): 705. Bibcode:2000AdPhy..49..705D. doi:10.1080/000187300413184.
- M. S. Dresselhaus; G. Samsonidze; S. G. Chou; G. Dresselhaus; J. Jiang; R. Saito & A. Jorio. "Recent Advances in Carbon Nanotube Photo-physics" (PDF).
- M. S. Dresselhaus & G. Dresselhaus (2002). "Intercalation Compounds of Graphite" (PDF). Advances in Physics. 51 (1): 1. Bibcode:2002AdPhy..51....1D. doi:10.1080/00018730110113644.
- M. S. Dresselhaus (2004). "Big Opportunities for Small Objects" (PDF). Materials Today Magazine. 5 (11): 48. doi:10.1016/S1369-7021(02)01164-1.
- M. S. Dresselhaus, G. Dresselhaus and A. Jorio (2004). "Unusual Properties and Structures of Carbon Nanotubes" (PDF). Annual Review of Materials Research. 34 (1): 247. Bibcode:2004AnRMS..34..247D. doi:10.1146/annurev.matsci.34.040203.114607.
- M. S. Dresselhaus; G. Dresselhaus; R. Saito; A. Jorio (2005). "Raman Spectroscopy of Carbon Nanotubes" (PDF). Physics Reports. 409 (2): 47. Bibcode:2005PhR...409...47D. doi:10.1016/j.physrep.2004.10.006.
- M. S. Dresselhaus & H. Dai (2004). "Carbon Nanotubes: Continued Innovations and Challenges". MRS Bulletin. 29: 237. doi:10.1557/mrs2004.74.
- J. Heremans & M. S. Dresselhaus (2005). "Low Dimensional Thermoelectricity" (PDF). CRC Handbook - Molecular and Nano-electronics: Concepts, Challenges, and Designs.
- M. S. Dresselhaus, R. Saito and A. Jorio (2004). "Semiconducting Carbon Nanotubes" (PDF). Proceedings of ICPS-27.
- S. G. Chou; F. Plentz-Filho; J. Jiang; R. Saito; D. Nezich; H. B. Ribeiro; A. Jorio; M. A. Pimenta; G. Samsonidze; A. P. Santos; M. Zheng; G. B. Onoa; E. D. Semke; G. Dresselhaus; M. S. Dresselhaus (2005). "Photo-excited Electron Relaxation Process Observed in Photoluminescence Spectroscopy of DNA-wrapped Carbon Nanotube". Physical Review Letters. 94 (12): 127402. Bibcode:2005PhRvL..94l7402C. doi:10.1103/PhysRevLett.94.127402.
- M. S. Dresselhaus (2004). "Nanotubes: a step in synthesis". Nature Materials. 3 (10): 665–6. Bibcode:2004NatMa...3..665D. doi:10.1038/nmat1232. PMID 15467687.
- M. S. Dresselhaus (2004). "Applied Physics: Nanotube Antennas". Nature Materials. 432 (7020): 959–60. Bibcode:2004Natur.432..959D. doi:10.1038/432959a. PMID 15616541.
- S. B. Fagan; A. G. Souza-Filho; J. Mendes-Filho; P. Corio; M. S. Dresselhaus (2005). "Electronic Properties of Ag- and CrO3-filled Single-wall Carbon Nanotubes" (PDF). Chemical Physics Letters. 406 (1-3): 54. Bibcode:2005CPL...406...54F. doi:10.1016/j.cplett.2005.02.091.
- Y. A. Kim; H. Muramatsu; T. Hayashi; M. Endo; M. Terrones; M. S. Dresselhaus (2004). "Thermal Stability and Structural Changes of Double-walled Carbon Nanotubes by Heat Treatment" (PDF). Chemical Physics Letters. 398 (1-3): 87. Bibcode:2004CPL...398...87K. doi:10.1016/j.cplett.2004.09.024.
- G. Samsonidze; R. Saito; N. Kobayashi; A. Gruneis; J. Jiang; A. Jorio; S. G. Chou; G. Dresselhaus; M. S. Dresselhaus (2004). "Family Behavior of the Optical Transition Energies in Single-wall Carbon Nanotubes of Smaller Diameters" (PDF). Applied Physics Letters. 85 (23): 5703. Bibcode:2004ApPhL..85.5703S. doi:10.1063/1.1829160.
- S. G. Chou; H. B. Ribeiro; E. Barros; A. P. Santos; D. Nezich; G. Samsonidze; C. Fantini; M. A. Pimenta; A. Jorio; F. Pletz-Filho; M. S. Dresselhaus; G. Dresselhaus; R. Saito; M. Zheng; G. B. Onoa; E. D. Semke; A. K. Swan; B. B. Goldberg; M. S. Unlu (2004). "Optical Characterization of DNA-wrapped Carbon Nanotube Hybrids" (PDF). Chemical Physics Letters. 397 (4-6): 296. Bibcode:2004CPL...397..296C. doi:10.1016/j.cplett.2004.08.117.
- E. I. Rogacheva; O. N. Nashchekina; A. V. Meriuts; S. G. Lyubchenko; O. Vekhov; M. S. Dresselhaus; G. Dresselhaus (2005). "Quantum Size Effects in PbTe/SnTe/PbTe Heterostructures". Applied Physics Letters. 86 (6): 063103. Bibcode:2005ApPhL..86f3103R. doi:10.1063/1.1862338.
- H. Son; Y. Hori; S. G. Chou; D. Nezich; G. Samsonidze; E. Barros; G. Dresselhaus; M. S. Dresselhaus (2004). "Environment Effects on the Raman Spectra of Individual Single-wall Carbon Nanotubes: Suspended and Grown on Polycrystalline Silicon" (PDF). Applied Physics Letters. 85 (20): 4744. Bibcode:2004ApPhL..85.4744S. doi:10.1063/1.1818739.
- C. Fantini; A. Jorio; M. Souza; A. J. Mai Jr.; M. S. Strano; M. A. Pimenta; M. S. Dresselhaus (2004). "Optical Transition Energies and Radial Breathing Modes for HiPco Carbon Nanotubes from Raman Spectroscopy" (PDF). Physical Review Letters. 93 (14): 147406. Bibcode:2004PhRvL..93n7406F. doi:10.1103/PhysRevLett.93.147406. PMID 15524844.
- S. B. Cronin; A. K. Swan; M. S. Unlu; B. B. Goldberg; M. S. Dresselhaus; M. Tinkham (2004). "Measuring Uniaxial Strain in Individual Single-wall Carbon Nanotubes: Resonance Raman Spectra of AFM Modified SWNTs" (PDF). Physical Review Letters. 93 (16): 167401. Bibcode:2004PhRvL..93p7401C. doi:10.1103/PhysRevLett.93.167401.
- Dresselhaus, M. S.; et.al. "Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes", Lawrence Livermore National Laboratory, United States Department of Energy, (February 20, 2007).