Mark E. Thompson
Quick Facts
Biography
Mark E. Thompson is a Californian chemistry academic who has worked with OLEDs.
Career
Thompson graduated with honors from the University of California, Berkeley earning his B.S. in chemistry in 1980. He earned a Ph.D. in inorganic chemistry working under the guidance of Prof. John E. Bercaw. He conducted research at a Smithsonian Environmental Research Center (S.E.R.C.) as a Research Fellow in an Inorganic Chemistry Laboratory at Oxford University. There, Thompson worked with Prof. Malcolm L. H. Green investigating specific properties of organometallic materials.
Following his S.E.R.C. Fellowship, Thompson became an assistant professor at Princeton University in 1987. He moved to the University of Southern California in 1995 where he currently holds a Ray R. Irani Chair of Chemistry. From 2005-2008, Thompson served as the Chemistry Department Chairman at USC.
Research
Thompson’s multidisciplinary research focuses on solving problems related to energy inefficiency of existing light-generating sources. His research is primarily focused on organic light-emitting diodes, organic photovoltaics and device interfaces.
Thompson’s research on OLEDs addresses problems such as the mechanism of electroluminescence, the identification of new materials and device architectures for OLEDs. One of his focuses is on organometallic complexes as phosphorescent emitters in OLEDS. His laboratory developed a class of Ir(III)-based complexes featuring polyaromatic ligands, which can be efficiently tuned for color emission and excited-state lifetimes. These materials can be doped in the emissive layer of multilayer, vapor-deposited OLEDs and generally show high stabilities and efficiencies.
He has also done work on deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency, which are essential for display and lighting applications. His results represent an advancement in blue-emitting PHOLED architectures and materials combinations that meet the requirements of many crucial illumination applications.
Additionally, Thompson has shown a very high-efficiency EP-OLED approaching 100% internal quantum efficiency. The high internal phosphorescence efficiency and charge balance in the structure are responsible for the high efficiency. He also developed a new white OLED architecture that uses a fluorescent emitting dopant to harness all high energy singlet excitons for blue emission, and phosphorescent dopants to harvest lower-energy triplet excitons for green and red emission. As of now, Thompson currently holds a patent for the invention of multicolor organic light emitting devices. This invention relates to devices used in flat panel electronic displays.
Another focus of his is on organic photovoltaics. Thompson’s research highlights recent progress in explaining molecular characteristics which result in photovoltage losses in heterojunction organic photovoltaics. In addition to this research, Thompson grows thin films to control their structure. Then with these films, he can study the nature of energy and charge propagation. He has done work on thin films made of zinc tetraphenylporphyrin (ZnTPP) which are used to prepare Organic solar cells.
Another large topic of research that is on biotic/abiotic interfaces. The research focuses on smart materials that can respond to different environmental factors to produce technologies that produce desirable results. Such materials can be sensitive to magnetic fields, pH, light, stress, voltage, temperature, etc. For instance, an implantable, resonant mass sensor was created (built on a probe with a piezoelectric thin film) for liquid mass sensing. The probe was made for recording neuronal activities in a living biological tissue. Thompson has also demonstrated a selective functionalization of a range of In2O3 Nanowire Mat devices by electrochemically activating their surfaces and then immobilizing single-strand DNA. This has the potential to be used in large-scale biosensor arrays or chips for inexpensive multiplexed detection. He has reported a formulation of near-infrared (near-IR) phosphorescent polymeric nanomicelles and their use for in vivo optical imaging and their efficiency in targeting and detecting tumors in small animals. Thompson’s projects on nanobiotic sensors ultimately seek to design biomaterials to improve and revolutionize medical procedures.
Awards and honors
- 2014 Initiated as a National Academy of Inventors Fellow
- 2013 Recipient of the Tolman Award
- 2/2011 Ranked 12th of the top 100 chemists worldwide for their citation impact scores for chemistry papers published since January 2000, by Thomson Reuters Web of Science
- 3/2007 USC Associates Award for Excellence in Research
- 11/2006 MRS Medal, given by the Materials Research Society for the development of new materials for organic LEDs
- 5/2006 Jan Rajchman Prize for Outstanding Research in Flat Panel Displays, given by the Society for Information Display
- 12/2004 Raubenheimer Outstanding Faculty Award, College of Letters, Arts and Science, University of Southern California
- 11/1998 Thomas Alva Edison Patent Award, presented by the Research and Development Council of New Jersey, for multicolor organic light emitting devices
- 3/1998 Distinguished Inventor of the Year, awarded by The Intellectual Property Owners Association for the development of stacked multicolor organic LEDs